jump to navigation

Transmutations of Mercury to Gold जनवरी 28, 2009

Posted by saravmitra in Uncategorized.
trackback

<

(1) H. Nagaoka ~ A. Miethe ~ H. Stammreich ~ (2) F. Tausend ~ (3) References

(1) H. Nagaoka~ A. Miethe ~ H. Stammreich

In March 1924, Prof. Hantaro Nagaoka, et al.(Tokyo Imperial University), described their studies “on the isotopes of mercury and bismuth revealed in the satellites of their spectral lines” ¾ gold in particular. In May 1925, they reported some of the technical details: Nagaoka and his co-workers discharged about 15 x 104 volts/cm for 4 hours between tungsten and mercury terminal under a dielectric layer of paraffin oil. They used the Purple of Cassius test to detect Au in the viscous residue of C, Hg, etc. The black mass was purified in vacuo, then by combustion with oxygen and extraction with HCl to yield Au, either in aqua regia solution or as ruby-red spots in the glassware. Microscopic films of Au were found on occasion. (19, 22)

Nagaoka stated that when a discharge was passed through drops of Hg falling between iron electrodes, the formation of silver and other elements was observed. Another run of a Hg lamp for more than 200 hours at 226 volts produced a milligram of gold, plus some platinum. He noted that, “In order to be sure of transmutation, repeated purification of Hg by distilling in vacuum at temperatures below 200o C is essential.”

Considerations of the satellites of the spectral lines of Hg led Nagaoka to the conclusion that a proton is “slightly detached” from the nucleus of Hg, and it can be removed:

If the above assumption as to the Hg nucleus is valid, we can perhaps realize the dream of alchemists by striking out a hydrogen-proton from the nucleus by a -rays, or by some other powerful methods of disruption [to produce Au from Hg]. (21, 26)

At about the same time, Professor Adolf Miethe of the Photochemical Department at the Berlin Technical High School found that the mercury vapor lamps used as a source for ultra-violet rays ceased to work after a time because of a sooty deposit which formed in the quartz tubes. Miethe tested these deposits and detected gold. Subsequently, Dr. Miethe and Dr. Hans Stammreich were issued German Patent Specification #233,715 (8 May 1924) for “Improvements in or Relating to the Extraction of Precious Metals”:

An electric arc is formed between mercury poles, in the same way as is done in mercury quartz lamps. With sufficient difference in potential, gold is then produced in the mercury. It is advisable to condense again the evaporated mercury. The quantity of gold produced depends, all other conditions being equal, on the quantity of current and also, among others, on the vapor pressure of the mercury or on the difference of potential in the arc. The difference of potential in the arc must therefore be sufficiently great. If it drops to excessively small amounts, the efficiency will be greatly reduced. If the difference of potential is increased, the quantity of gold formed will be considerably increased, beginning with a certain difference of potential. (12)

In July of 1924, Drs. Miethe and Stammreich announced that they had changed mercury into gold in a high-tension mercury vapor lamp. The experiment produced $1 of gold at a cost of $60,000, equivalent to over $2 million (gold then sold for $330/lb). Miethe used a potential of 170 volts applied for 20-200 hours. The lamp consumed 400-2,000 watts. A minimum potential difference is necessary. The yield of gold was minute: 0.1-0.01 mg. The mercury and the electrodes were analyzed and determined to be free of gold before the experiments. Miethe was not able to attempt to prove the production of a or b rays, hydrogen or helium. (22)

Consider the collision of high-speed electrons with mercury atoms. A small proportion of these electrons must be directed upon the nucleus. If they possess sufficient energy to penetrate the external levels of electrons in the mercury atom, they must reach the positively charged nucleus and be captured by it. Since the loss of an electron (as a b -ray) by the nucleus of an element results in the atomic number of the element in question being increased by one, the gain of an electron by an atomic nucleus must result in the diminution of the atomic number by one. This is quite general. In the case of an isotope of mercury of atomic number 80, the product will be an isotope of gold of atomic number 79. Upon existing knowledge it is simply a question of (1) the potential sufficient to drive the electron through the outer levels of electrons surrounding the mercury nucleus until it comes within the sphere of attraction of the powerfully charged nucleus; (2) whether the exceedingly small fraction of direct collisions with the nucleus that is to be anticipated will be sufficient to enable the gold produced to be detected.

As regards the first, it may be expected that the repulsion of the external shell of mercury electrons will diminish rather than prevent altogether the chance of the radiant electron reaching the nucleus; for once the shell is penetrated, the resultant force on the radiant electron must be on the average an attraction… The chemical detection of the gold produced would probably be the more formidable experimental difficulty. (30)

he experiments on the transformation of Hg into Au suggest the possibility of the transformation of a nucleus into that of the element next below it by the absorption of one electron when both nuclei are stable. This occurs most obviously as an isobare. The possibility of the existence of two isobares of odd mass-number, Tl 205 and Au 199, among non-radioactive elements may be inferred from experimental work… Aston has shown the existence of the Hg isotope 199… This type of transformation may occur in the two pairs of elements Pb and Tl, Hg and Au… The masses of the Tl and Au produced are 205 and 199 respectively.breughelalchemist1

About these ads

टिप्पणियाँ»

No comments yet — be the first.

एक उत्तर दें

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

%d bloggers like this: